APPLICATION OF ARONIA MELANOCARPA FRUIT POWDER OBTAINED BY AN INNOVATIVE LOW-TEMPERATURE DRYING METHOD FOR FACIAL CARE MASKS

Authors

  • Emilia Klimaszewska Casimir Pulaski University of Radom, Chrobrego 27, 26-600 Radom, Poland, Department of Cosmetology, Faculty of Medical Sciences and Health Sciences https://orcid.org/0000-0002-5621-5911
  • Marta Ogorzałek Casimir Pulaski University of Radom, Chrobrego 27, 26-600 Radom, Poland, Department of Cosmetology, Faculty of Medical Sciences and Health Sciences https://orcid.org/0000-0002-1896-1876
  • Natalia Korolska Casimir Pulaski University of Radom, Chrobrego 27, 26-600 Radom, Poland, Department of Cosmetology, Faculty of Medical Sciences and Health Sciences
  • Ryszard Tomasiuk Casimir Pulaski University of Radom, Chrobrego 27, 26-600 Radom, Poland, Department of Basic Medical Sciences, Faculty of Medical Sciences and Health Sciences https://orcid.org/0000-0003-1570-5196

DOI:

https://doi.org/10.26408/130.05

Keywords:

skin care cosmetics, low temperature drying, chokeberry, TEWL, physicochemical properties

Abstract

The purpose of the study was to develop recipes and create skin care masks based on Aronia Melanocarpa Fruit Powder, obtained by an innovative low-temperature drying method, and to evaluate the physicochemical and functional properties of such products.
It was noted that as the concentration of fruit powder in the tested formulations increased, the value of dynamic viscosity increased, while the yield point decreased. It was found that an increase in the concentration of plant powder in the formulation caused a change in the saturation and hue of the analysed masks towards red and yellow. After application of the developed masks to the skin, TEWL decreased, with the lowest value recorded for the mask with the highest concentration (0.5%) of Aronia Melanocarpa Fruit Powder.

References

Asthana, N., Pal, K., Aljabali, A.A., Tambuwala, M.M., de Souza, F.G., Pandey, K., 2021, Polyvinyl Alcohol (PVA) Mixed Green–Clay and Aloe Vera Based Polymeric Membrane Optimization: Peel-off Mask Formulation for Skin Care Cosmeceuticals in Green Nanotechnology, Journal of Molecular Structure, vol. 1229.

Beringhs, A.O. R., Rosa, J.M., Stulzer, H.K., Budal, R.M., Sonaglio, D., 2013, Green Clay and Aloe Vera Peel-off Facial Masks: Response Surface Methodology Applied to the Formulation Design, Aaps Pharmscitech, vol. 14, pp. 445–455.

Bujak, T., Zagórska-Dziok, M., Ziemlewska, A., Nizioł-Łukaszewska, Z., Wasilewski, T., Hordyjewicz-Baran, Z., 2021, Antioxidant and Cytoprotective Properties of Plant Extract from Dry Flowers as Functional Dyes for Cosmetic Products, Molecules, vol. 26.

Ćujić, N.Ć., Žugić, A., Živković, J., Zdunić, G., Šavikin, K., 2017, Preliminary Safety Estimate of Cosmetic Anti-Age Creams with Chokeberry Extract, Using in vivo Bioengineering Techniques, Lekovite Sirovine, vol. 37, pp. 41–44.

Doroszko, M., Janda, K., Jakubczyk, K., 2018, Właściwości prozdrowotne wybranych owoców krajowych, Kosmos, vol. 2, no. 67, pp. 415–423.

Draelos, Z., Thaman, L., 2007, Cosmetics Formulation of Skin Care Products, Taylor & Francis Group, New York.

Efron, B., 1979, Bootstrap Methods: Another Look at the Jackknife, The Annals of Statistics, vol. 7, pp. 1–26.

Klimaszewska, E., Małysa, A., Zięba, M., Rój, E., Wasilewski, T., 2016a, Zastosowanie hydrofobowego ekstraktu z nasion jeżyny otrzymywanego przez ekstrakcję nadkrytycznym ditlenkiem węgla do wytwarzania maseczek kosmetycznych, Przemysł Chemiczny, vol. 95, no. 6, pp. 1151–1156.

Klimaszewska, E., Małysa, A., Zięba, M., Wasilewski, T., 2016b, Korelacje między zawartością regulatorów konsystencji a właściwościami fizykochemicznymi i użytkowymi maseczek pielęgnacyjnych zawierających ekstrakt z nasion jeżyny otrzymywany

w warunkach nadkrytycznego ditlenku węgla, [in:] Wasilewski T., Klimaszewska E. (eds.) Zastosowanie ekstraktów roślinnych pozyskiwanych w warunkach nadkrytycznego CO2 w kosmetykach i produktach chemii gospodarczej, Wydawnictwo Uniwersytetu Technologiczno- Humanistycznego w Radomiu, Radom, pp. 85–97.

Klimaszewska, E., Zięba, M., Gregorczyk, K., Markuszewski, L. 2021, Application of Blue Honeysuckle Powder Obtained by an Innovative Method of Low-Temperature Drying in Skincare Face Masks, Molecules, vol. 26, no. 23, pp. 71–84.

Kulawik‐Pióro, A., Klimaszewska, E., Ogorzałek, M., Ruman, J., Rożnawska, K., 2020, Effectiveness of Protective Preparations: Impact of Vegetable Oil Additives to Recipes, European Journal of Lipid Science and Technology, vol. 122, no. 12.

Milutinović, M., Nikolić, N.Ć., Šavikin, K., Pavlović, D., Ranđelović, M., Miladnović, B., Kitić, D., 2021, Chokeberry (Aronia melanocarpa (Michx.) Elliott) Waste–from Waste to Functional Pharmaceutical Products, Archives of Pharmacy, vol. 71 (Suppl. 5).

Ngomo, O., Sieliechi, J.M., Tchatchueng, J.B., Kamga, R., Tabacaru, A., Dinica, R., Praisler, M., 2014, Differences between Structural, Textural and Rheological Properties of Two Cameroonian Mineral Clays Used as Cosmetic Mask, Proceedings of the International Conference on Chemistry and Chemical Engineering (CCE 2014), Santorini, Greece, 19–21 July, Volume Advances in Environmental Sciences, Development and Chemistry, pp. 425–431.

Sadowska, A., Rakowska, R., Świderski, F., Hoffmann, M., Wasiak-Zys, G., 2015, Cechy jakościowe proszków warzywnych otrzymywanych innowacyjną metodą suszenia w niskich temperaturach z równoczesną mikronizacją, Postępy Techniki Przetwórstwa Spożywczego, no. 2, pp. 63–67.

Sadowska, A., Świderski, F., Rakowska, R., Hallmann, E., 2019, Comparison of Quality and Microstructure of Chokeberry Powders Prepared by Different Drying Methods, Including Innovative Fluidised Bed Jet Milling and Drying, Food Science and Biotechnology, vol. 28, no. 4, pp. 1073–1081.

Stevanus, H., Veriansyah, B., Widjojokusumo, E., Tjandrawinata, R.R., 2017, Simultaneous Micronization and Purification of Bio-Active Fraction by Supercritical Antisolvent Technology, Journal of Advanced Pharmaceutical Technology and Research, vol. 8, pp. 52–58.

Svarc-Gajic, J., Creda, V., Clavijo, S., Suarez, R., Zengin, G., Cvetanovic, A., 2019, Chemical and Bioactivity Screening of Subcritical Water Extract of Chokeberry (Aronia melanocarpa) Stems, Elsevier Journal of Pharmaceutical and Biomedical Analysis, vol. 164, pp. 353–359.

Tao, Y., Wang, Y., Pan, M., Zhong, S., Wu, Y., Yang, R., Han, Y., Zhou, J., 2017, Combined ANAFIS and Numerical Methods to Simulate Ultra Sond-Assisted Extraction of Phenolics from Chokeberry Cultivated in China and Analysis of Phenolic Composition, Elsevier Separation and Purification Technology, vol. 178, pp. 178–188.

Team, R., 2013, A Language and Environment for Statistical Computing, Developement Core, Vienna, Austria.

Wawer, I., Eggert, P., Hołub, B., 2015, Aronia superowoc, Wydawnictwo Wektor, Warszawa.

Wilczyński, K., Olesińska, K., Kałwa, K., Kobus, Z., 2017, Analiza sposobu uprawy, składu, żywieniowych oraz prozdrowotnych właściwości owoców aronii czarno-owocowej (Aronia melanocarpa (Michx.) Elliott), Acta Scientiarum Polonorum, Technica Agraria, vol. 1–2, no. 16, pp. 3–11.

Downloads

Published

2024-06-28

How to Cite

Klimaszewska, E., Ogorzałek, M., Korolska, N., & Tomasiuk, R. (2024). APPLICATION OF ARONIA MELANOCARPA FRUIT POWDER OBTAINED BY AN INNOVATIVE LOW-TEMPERATURE DRYING METHOD FOR FACIAL CARE MASKS. Scientific Journal of Gdynia Maritime University, (130), 63–75. https://doi.org/10.26408/130.05