The effect of black pepper degree fragmentation on its hygroscopic properties with using selected models of sorption

Authors

  • A. Ocieczek Akademia Morska w Gdyni, Morska 81-87, 81–225 Gdynia, Wydział Przedsiębiorczości i Towaroznawstwa, Katedra Towaroznawstwa i Zarządzania Jakością
  • T. Pukszta Akademia Morska w Gdyni, Morska 81-87, 81–225 Gdynia, Wydział Przedsiębiorczości i Towaroznawstwa, Katedra Towaroznawstwa i Zarządzania Jakością
  • J. Nebel Akademia Morska w Gdyni, Morska 81-87, 81–225 Gdynia, Wydział Przedsiębiorczości i Towaroznawstwa, Katedra Towaroznawstwa i Zarządzania Jakością

Keywords:

black pepper, water activity, sorption isotherms, model BET and GAB

Abstract

: The grinding of pepper to expand its surface and as a result may occur to increase the dynamics of surface phenomena conditioned by interaction with water vapor. The aim of the study was to evaluate the effect of grinding of black pepper on its hygroscopic properties perceived as an essential factor for the stability of the storage. The study included determination of adsorption isotherms at 20°C by the static-desiccator method, identify the parameters of the adsorption process and the microstructure of the particle surface by means of theoretical models of sorption and Kelvin equation. Adsorption isotherms of ground pepper samples tested were characterized by a sigmoid shape typical of porous surfaces on which there is a multilayer adsorption leading to capillary condensation. Empirically determined isotherms of adsorption were well-described by model GAB, which was characterized by a wide range of empirical data to fit the theoretically determined values and high accuracy. Numerical designated parameters of GAB model evaluated and compare the parameters of the microstructure surface of the tested samples of pepper. Diversified fineness of black pepper does not cause a significant variation of its hygroscopic properties.

References

Andrade, R.D.P., Lemus, R.M., Pérez, C.C., 2011, Models of Sorption Isotherms for Food: Used and Limitations, Vitae, Revista de la Facultad de Química Farmacéutica, no. 18(3), s. 325–334.

[2] Badmaev, V., Majeed, M., Prakash, L., 2000, Piperine Derived from Black Pepper Increases the Plasma Levels of Coenzyme Q10 Following Oral Supplementation, J. Nutr. Biochem., no. 11(2), s. 109-113.

[3] Blahovec, J., Yanniotis, S., 2008, GAB Generalized Equation for Sorption Phenomena, Food Bioprocess Technology, no. 1, s. 82–90. s. 307–316.

[4] Caurie, M., 2006, The Derivation of the GAB Adsorption Equation from the BDDT Adsorption Theory, International Journal of Food and Technology, no. 41, s. 173–179.

[5] Figura, L.O., Teixeira, A.A., 2007, Food Physic. Physical Properties, Measurement and Applications, Springer-Verlag, Berlin Heidelberg.

[6] Gal, S., 1983, The Need for and Practical Applications of Sorption Data, w: Jowitt, R., Escher, F., Hallstrom, B., Meffert, H.F.T., Spiess, W.E.L., Vos, G. (eds.), Physical Properties of Foods, Applied Science Published, New York.

[7] Hébrard, A., Oulahna, D., Galet, L., Cuq, B., Abecassis, J., Fages, J., 2003, Hydration Properties of Durum Wheat Semolina: Influence of Particle Size and Temperature, Powder Technology, no. 130, s. 211–218.

[8] Karel, M., 1975, Water Activity and Food Preservation, w: Karel, M., Fennema, O.R., Lund, D.B. (eds.), Physical Principles of Food Preservation. Principles of Food Science, Part 2, Marcel Dekker, New York, s. 237–263.

[9] Krełowska-Kułas, M., 1993, Badanie jakości produktów spożywczych, PWN, Warszawa.

[10] Lempka, A. (red.), 1975, Towaroznawstwo produktów spożywczych, PWE, Warszawa.

[11] Lewicki, P., 1997, The Applicabillity of the GAB Model to Food Water Sorption Isotherms, International Journal of Food Science and Technology, no. 32, s. 553–557.

[12] Ocieczek, A., 2012, Właściwości hydratacyjne jako wyróżnik jakości użytkowej mąk pszennych pasażowych, Prace Naukowe Akademii Morskiej w Gdyni, Gdynia.

[13] Ocieczek, A., 2013, Impact of Comminution on Adsorption Properties of Gluten-free Wheat Starch, Acta Agrophysica, PAN, vol. 20(1), s. 125–136.

[14] Ocieczek, A., Kostek, R., 2009, Sorptive Properties of Type 2000 Wheat and Rye Flours, Acta Agrophysica PAN, vol. 14(2), s. 393–402.

[15] Ocieczek, A., Skotnicka, M., Kłopotek, K., 2015, Właściwości higroskopijne pyłku kwiatowego (obnóży pszczelich) jako czynnik jego bezpieczeństwa i stabilności przechowalniczej, Probl. Hig. Epidemiol., nr 96(4), s. 821–826.

[16] Paderewski, M., 1999, Procesy adsorpcyjne w inżynierii chemicznej, WNT, Warszawa.

[17] Pałacha, Z., Sitkiewicz, I. (red.), 2010, Właściwości fizyczne żywności, WNT, Warszawa.

[18] Pérez-Alonso, C., Berstain, C.I., Lobato-Calleros, C., Rodriguez-Huezo, M.E., Vernon-Carter, E.J., 2006, Thermodynamic Analysis of the Sorption Isotherms of Pure and Blended Carbohydrate Polymers, Journal of Food Engineering, no. 77, s. 753–760.

[19] Sikorski, Z. (red.), 2007, Chemia żywności, WNT, Warszawa.

[20] Sobczyk, M., 2004, Statystyka, PWN, Warszawa.

[21] Timmermann, E.O., 2003, Multilayer Sorption parameters: BET or GAB Values? Colloids and Surface A: Physicochemial and Engineering Aspects, no. 220, s. 235–260.

[22] Timmermann, E.O., Chirife, J., Iglesias, H.A., 2001, Water Sorption Isotherms of Foods and Foodstuffs: BET or GAB Parameters? Journal of Food Engineering, no. 48, s. 19–31.

Published

2017-08-31

How to Cite

Ocieczek, A., Pukszta, T., & Nebel, J. (2017). The effect of black pepper degree fragmentation on its hygroscopic properties with using selected models of sorption. Scientific Journal of Gdynia Maritime University, (99), 20–33. Retrieved from https://sjgmu.umg.edu.pl/index.php/sjgmu/article/view/192

Issue

Section

Articles