The Thermal Power Appraisal of Steam Power Plant Heat Exchangers for Their Various Operating Modes in the Aspect of Their Thermal Degradation
DOI:
https://doi.org/10.26408/108.04Keywords:
steam power plants, condensers, heat recovery exchangers, thermal degradation, operating modes of heat exchangersAbstract
The fouling presence on the heat transfer surfaces of the heat exchangers within the stationary and the ship steam power plants cause an increase in terminal temperature difference values and entails a decrease of the vacuum level, as well. The thermal degradation process always leads to reducing the thermal flux transported by the heat exchangers and decreasing total efficiency of the thermal unit, finally. It turns out, however, that the loss of thermal power of a heat exchanger does not only depend on the fouling thermal resistance but is also closely correlated with the thermal attributes of given heat exchanger, i.e. the heat transfer coefficient values at various operating conditions for that heat exchanger. The article describes the above-mentioned phenomena and presents the results of the author’s own experimental research.References
Antar, M.A., Zubair, S.M., 2007, The Impact of Fouling on Performance Evaluation of Multi-Zone Feedwaters Heaters, Applied Thermal Engineering, vol. 27, s. 2505–2013.
[2] Brahim, F., Augustin, W., Bohnet, M., 2003, Numerical Simulation of the Fouling Structured Heat Transfer Surfaces, ECI Conference on Heat Exchanger Fouling and Cleaning. Fundamentals and Applications, s. 121–129.
[3] Brodowicz, K., 1982, Teoria wymienników ciepła i masy, PWN, Warszawa.
[4] Butrymowicz, D., 2001, Influence of Fouling and Inert Gases on the Performance of Regenerative Feedwater Heaters, Archives of Thermodynamics, vol. 23, no. 1–2, s. 127–140.
[5] Butrymowicz, D., Hajduk, T., 2006, Zagadnienia degradacji termicznej wymienników ciepła, Technika Chłodnicza i Klimatyzacyjna, R. XIII, vol. 3, nr 121, s. 111–117.
[6] Chenoweth, J.M., 1990, Final Report of the HTRI/TEMA Joint Commitee to Review the Fouling Section of the TEMA Standards, Heat Transfer Engineering, vol. 11, no. 1, s. 73–107.
[7] Chmielniak, T., 2008, Technologie energetyczne, WNT, Warszawa.
[8] Cunningham, J., 1981, The Effect of Use of Noncondensable Gases on Enhanced Surface Condensers, w: Marto, P.J., Nunn, R.H. (eds.), Power Condenser Heat Transfer Technology, Hemisphere Publishing Co, New York.
[9] Dobosiewicz, J., 2006, Wpływ jakości wody zasilającej i kotłowej na trwałość powierzchni ogrzewalnych, Energetyka, nr 7, s. 517–521.
[10] Dobosiewicz, J., Zbroińska-Szczechura, E., 2000, Diagnostyka materiałowa i cieplna skraplaczy, Energetyka, vol. LIV, nr 3(549), s. 122–124.
[11] Förster, M., Bohnet, M., 2002, Modification of the Interface Crystal/Heat Transfer Surface to Reduce Heat Exchanger Fouling, w: Müller-Steinhagen, H., Malayeri M.R., Watkinson, A.P. (eds.), Heat Exchanger Fouling. Fundamental Approaches & Technical Solutions, Publico Publications, Essen.
[12] Górski, Z., 2007, Budowa i działanie okrętowych wymienników ciepła. Construction and working of marine heat exchangers, Wydawnictwo Akademii Morskiej w Gdyni, Gdynia.
[13] Hajduk, T., 2016, Fizyczne i chemiczne aspekty występowania zanieczyszczeń na powierzchniach wymiany ciepła w siłowniach parowych, Zeszyty Naukowe Akademii Morskiej w Gdyni, nr 96, s. 59–70.
[14] Hajduk, T., 2018, Research on Deposit Accumulated on Heat Exchange Surfaces in the Light of Thermal Degradation of Heat Exchange Aparatus of Steam Power Plants. Part I: Study of Real Sediments, Polish Maritime Research, vol. 25, no. 1(97), s. 99–107.
[15] Karabelas, A.J., 2001, Scale Formation in Tubular Heat Exchangers – Research Priorites, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Pisa, s. 73–81.
[16] Knudsen, J.G., 1992, Fouling in Heat Exchangers. Overview and Summary, w: Hewitt, G.F. (ed.) Handbook of Heat Exchanger Design, Begell House Inc., New York.
[17] Kotlewski, F., Mieszkowski, M.,1972, Pomiary w technice cieplnej, WNT, Warszawa.
[18] Mwaba, M.G., Rindt, C.C.M., Vorstman, M.A.G., Steenhoven van, A.A., 2002, Calcium Sulfate Deposition on a Heated Plate and Removal Characteristics, w: Müller-Steinhagen, H., Malayeri, M.R., Watkinson, A.P. (eds.), Heat Exchanger Fouling. Fundamental Approaches & Technical Solutions, Publico Publications, Essen.
[19] Perrakis, M., Andritsos, N., Karabelas, A.J., 1999, CaCO3 Scaling Under Constant Heat Flux, w: Bott, T.R., Melo, L.F., Panchal, C.B., Somerscales, E.F.C. (eds.), Understanding Heat Exchanger Fouling and Its Mitigation, Begell House Inc., New York.
[20] Pudlik, W., 1988, Wymiana i wymienniki ciepła, Wydawnictwo Politechniki Gdańskiej, Gdańsk.
[21] Rusowicz, A., 2004, Analiza powstających osadów w rurach skraplacza energetycznego, XII Sympozjum Wymiany Ciepła i Masy, Kraków, s. 753–761.
[22] Stańda, J., 1999, Woda do kotłów parowych i obiegów chłodzących siłowni cieplnych, WNT, Warszawa.
[23] Szargut, J., 1993, Ekologiczne uwarunkowania energetyki, Energetyka, nr 1(463), s. 378–383.
[24] Taborek, J., 1981, Effects of Fouling and Related Comments on Marine Condenser Design, w: Marto, P.J. (ed.), Power Condenser Heat Transfer Technology, Publishing Co.
[25] Wiśniewski, S., Wiśniewski, T., 2000, Wymiana ciepła, WNT, Warszawa.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright to their work, licensing it under the Creative Commons Attribution License Attribution 4.0 International licence (CC BY 4.0) which allows articles to be re-used and re-distributed without restriction, as long as the original work is correctly cited. The author retains unlimited copyright and publishing rights.