The use of linear matrix inequalities for synthesis of ships control systems

Authors

  • M. Rybczak Akademia Morska w Gdyni, Morska 81–87, 81-581 Gdynia, Wydział Elektryczny, Katedra Automatyki Okrętowej

Keywords:

linear matrix inequalities, multivariable system synthesis, marine use

Abstract

The paper is a short review of publications about the use of linear matrix inequalities for synthesis of marine controlled object models. The first part is a short description of linear matrix inequalities. The second part presents two publications where linear matrix inequalities were implemented in marine industry. The summary describes advantages and disadvantages of the proposed numerical method.

References

Alfi, A., Shokrzadeh, A., Asadi, M., 2015, Reliability Analysis of H-Infinity Control for a Container Ship in Way-point Tracking, Applied Ocean Research, no. 52, s. 309–316.

[2] Aström, K.J., Wittenmark, B., 2013, Computer-controlled Systems: Theory and Design, Courier Corporation.

[3] Boyd, S.P., El Ghaoui, L., Feron, E., Balakrishnan, V., 1994, Linear Matrix Inequalities in System and Control Theory, vol. 15, SIAM, Philadelphia.

[4] Duan, G.R., Yu, H.H., 2013, LMIs in Control Systems: Analysis, Design and Applications, CRC Press.

[5] El Ghaoui, L., Niculescu, S.I., 2000, Advances in Linear Matrix Inequality Methods in Control, vol. 2, SIAM, Philadelphia.

[6] Gierusz, W., 2003, Multivariable Robust Control Applied to Steering of Three Ship’s Velocities, Archives of Control Sciences, vol. 13, no. 4, s. 459–492.

[7] Helton, J.W., Merino O., 1998, Classical Control Using H-Infinity Methods: Theory, Optimization, and Design, SIAM, Philadelphia.

[8] Iqbal, S., Bhatti, A.I., 2011, Load Varying Polytopic Based Robust Controller Design in LMI Framework for a 2d of Stabilized Platform, Arabian Journal for Science and Engineering, no. 36(2), s. 311–327.

[9] Katebi, M.R., Byrne, J.C., 1988, LQG Adaptive Ship Autopilot, Transactions of the Institute of Measurement and Control, no. 10(4), s. 187–197.

[10] Lam, H.K., Leung, F.H.F., 2011, Stability Analysis of Fuzzy-model-based Control Systems, vol. 264, Springer

[11] Lin, C., Wang, G., T.Lee, Tong, He, Y., 2007, LMI Approach to Analysis and Control of TakagiSugeno Fuzzy Systems with Time Delay, vol. 351, Springer.

[12] Lisowski, J., 2012, The Sensitivity of Safe Ship Control in Restricted Visibility at Sea, TransNav, The International Journal on Marine Navigation and Safety of Sea Transportation, vol. 6, no. 1, s. 35–45.

[13] Lisowski, J., 2013, Metody komputerowego wspomagania decyzji manewrowej nawigatora w sytuacjach kolizyjnych, Zeszyty Naukowe Akademii Marynarki Wojennej w Gdyni, vol. 54, nr 1(192), s. 67–78.

[14] Nasuno, Y., Shimizu, E., Ito, M., Yamamoto, I., Tsukioka, S., Yoshida, H., Hyakudome, T., Ishibashi, S., Aoki, T., 2007, Design Method for a New Control System for an Autonomous Underwater Vehicle Using Linear Matrix Inequalities, Artificial Life and Robotics, no. 11(2), s.149–152.

[15] Ostertag, E., 2011, Mono-and Multivariable Control and Estimation: Linear, Quadratic and LMI Methods, vol. 2, Springer Science & Business Media.

[16] Tomera, M., 2015, A Multivariable Low Speed Controller for a Ship Autopilot with Experimental Results, 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, s. 17–22.

[17] Veremey, E.I., Korovkin, M.V., Sotnikova, M.V., 2015, Ships’ Steering in Accurate Regime Using Autopilot with Special Structure of Control Law, IFAC-PapersOnLine, no. 48(16), s. 7–12.

Remove [1] Alfi, A., Shokrzadeh, A., Asadi, M., 2015, Reliability Analysis of H-Infinity Control for a Container Ship in Way-point Tracking, Applied Ocean Research, no. 52, s. 309–316.

[2] Aström, K.J., Wittenmark, B., 2013, Computer-controlled Systems: Theory and Design, Courier Corporation.

[3] Boyd, S.P., El Ghaoui, L., Feron, E., Balakrishnan, V., 1994, Linear Matrix Inequalities in System and Control Theory, vol. 15, SIAM, Philadelphia.

[4] Duan, G.R., Yu, H.H., 2013, LMIs in Control Systems: Analysis, Design and Applications, CRC Press.

[5] El Ghaoui, L., Niculescu, S.I., 2000, Advances in Linear Matrix Inequality Methods in Control, vol. 2, SIAM, Philadelphia.

[6] Gierusz, W., 2003, Multivariable Robust Control Applied to Steering of Three Ship’s Velocities, Archives of Control Sciences, vol. 13, no. 4, s. 459–492.

[7] Helton, J.W., Merino O., 1998, Classical Control Using H-Infinity Methods: Theory, Optimization, and Design, SIAM, Philadelphia.

[8] Iqbal, S., Bhatti, A.I., 2011, Load Varying Polytopic Based Robust Controller Design in LMI Framework for a 2d of Stabilized Platform, Arabian Journal for Science and Engineering, no. 36(2), s. 311–327.

[9] Katebi, M.R., Byrne, J.C., 1988, LQG Adaptive Ship Autopilot, Transactions of the Institute of Measurement and Control, no. 10(4), s. 187–197.

[10] Lam, H.K., Leung, F.H.F., 2011, Stability Analysis of Fuzzy-model-based Control Systems, vol. 264, Springer

[11] Lin, C., Wang, G., T.Lee, Tong, He, Y., 2007, LMI Approach to Analysis and Control of TakagiSugeno Fuzzy Systems with Time Delay, vol. 351, Springer.

[12] Lisowski, J., 2012, The Sensitivity of Safe Ship Control in Restricted Visibility at Sea, TransNav, The International Journal on Marine Navigation and Safety of Sea Transportation, vol. 6, no. 1, s. 35–45.

[13] Lisowski, J., 2013, Metody komputerowego wspomagania decyzji manewrowej nawigatora w sytuacjach kolizyjnych, Zeszyty Naukowe Akademii Marynarki Wojennej w Gdyni, vol. 54, nr 1(192), s. 67–78.

[14] Nasuno, Y., Shimizu, E., Ito, M., Yamamoto, I., Tsukioka, S., Yoshida, H., Hyakudome, T., Ishibashi, S., Aoki, T., 2007, Design Method for a New Control System for an Autonomous Underwater Vehicle Using Linear Matrix Inequalities, Artificial Life and Robotics, no. 11(2), s.149–152.

[15] Ostertag, E., 2011, Mono-and Multivariable Control and Estimation: Linear, Quadratic and LMI Methods, vol. 2, Springer Science & Business Media.

[16] Tomera, M., 2015, A Multivariable Low Speed Controller for a Ship Autopilot with Experimental Results, 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, s. 17–22.

[17] Veremey, E.I., Korovkin, M.V., Sotnikova, M.V., 2015, Ships’ Steering in Accurate Regime Using Autopilot with Special Structure of Control Law, IFAC-PapersOnLine, no. 48(16), s. 7–12.

1/2 languages completed

Published

2017-10-30

How to Cite

Rybczak, M. (2017). The use of linear matrix inequalities for synthesis of ships control systems. Scientific Journal of Gdynia Maritime University, (98), 217–221. Retrieved from https://sjgmu.umg.edu.pl/index.php/sjgmu/article/view/234

Issue

Section

Articles