The Influence of Winding Temperature on Electromagnetic Torque of Induction Motor under Voltage Containing Subharmonics

Authors

  • P. Gnaciński Akademia Morska w Gdyni, Morska 81-87, 81-225 Gdynia, Wydział Elektryczny, Katedra Elektroenergetyki Okrętowe
  • D. Hallmann Akademia Morska w Gdyni, Morska 81-87, 81-225 Gdynia, Wydział Elektryczny, Katedra Elektroenergetyki Okrętowe

DOI:

https://doi.org/10.26408/103.13

Keywords:

voltage quality, field modeling, induction motor, subharmonics

Abstract

The article concerns the impact of the winding temperature and supply voltage disturbances on the electromagnetic torque. The torque waveforms and their spectrums are presented. The amplitude of torque fluctuation is compared for various subharmonics frequencies. The results of numerical computations with the finite element method are shown for a 3 kW cage induction motor.

References

de Abreu, J.P.G., Emanuel, A.E., 2002, Induction Motor Thermal Aging Caused by Voltage Distortion and Imbalance: Loss of Useful Life and its Estimated Cost, IEEE Transactions on Industry Applications, vol. 38, no. 1, s. 12–20.

[2] ANSYS Technical Documentation, http://www.ansys.com.

[3] Baptista, J., Gonçalves, J., Soares, S., Valente, A., Morais, R., Bulas-Cruz, J., Reis, M.J., 2010, Induction Motor Response to Periodical Voltage Fluctuations, Proc. XIX International Conference on Electrical Machines ICEM, Roma, Italy.

[4] Basic, D., 2010, Input Current Interharmonics of Variable-Speed Drives Due to Motor Current Imbalance, IEEE Transactions on Power Delivery, vol. 25, no. 4, s. 2797–2806.

[5] Bolen, M.H.J., Gu, I.Y.H., 2006, Signal Processing of Power Quality Disturbances, Wiley, New York.

[6] Chang, G.W., Chen, S.K., Su, H.J, Wang, P.K., 2011, Accurate Assessment of Harmonic and Interharmonic Currents Generated by VSI-fed Drives under Unbalanced Supply Voltages, IEEE Transactions on Power Delivery, vol. 26, no. 2, s. 1083–1091.

[7] Deokar, S.A., Waghmare, L., Jadhav, G.N., 2010, Voltage Flicker Assessment of Induction Motors Used in the Integrated Water Pumping Station, Proc. of Joint International Conference on Power Electronics, Drives and Energy Systems (PEDES), Power India, New Delhi.

[8] Feese, T., Maxfield, R., Hilscher, M., 2008, Torsional Vibration Problem with Motor/ID Fan System Due to PWM Variable Frequency Drive, 37th Turbomachinery Symposium, Houston, TX, s. 9–11.

[9] Fuchs, E.F., Roesler, D.J., Masoum, M.A.S., 2004, Are Harmonics Recommendations According to IEEE and IEC Toorestrictive? IEEE Transactions on Power Delivery, vol. 19, no. 4, s. 1775–1786.

[10] Gallo, D., Langella, R., Testa, A., Emanuel, A., 2004, On the Effects of Voltage Subharmonics on Power Transformers: a Preliminary Study, 11th International Conference on Harmonics and Quality of Power, ICHPQ, Lake Placid, s. 501–506.

[11] Gnaciński, P., Hallmann, D., 2015, Badania wstępne silnika indukcyjnego zasilanego napięciem zawierającym subharmoniczne z wykorzystaniem metod polowych, Maszyny Elektryczne, Zeszyty Problemowe, 4(108), s. 65–69.

[12] Gnaciński, P., Hallmann, D., 2016, Wstępne badania wahań prędkości obrotowej silnika indukcyj¬nego zasilanego napięciem zawierającym subharmoniczne, Prace Instytutu Elektrotechniki, nr 275, s. 57–66.

[13] Gnaciński, P., Hallmann, D., 2017, Badania wstępne silnika indukcyjnego w warunkach wahań napięcia z wykorzystaniem metod polowych, Zeszyty Naukowe Akademii Morskiej w Gdyni, nr 98, s. 64–70.

[14] Gnaciński, P., Pepliński, M., 2014, Induction Cage Machine Supplied with Voltage Containing Subharmonics and Interharmonics, IET Electric Power Applications, vol. 8, no. 8, s. 287–295.

[15] Hanzelka, Z., 2011, Jakość energii elektrycznej. Wahania napięcia, http://twelvee.com.pl/pdf/ Hanzelka/ cz_3_pelna.pdf.

[16] Hsu, C.T., Chen, C.S., Lin, C.H., 2011, Electric Power System Analysis and Design of an Expanding Steel Cogeneration Plant, IEEE Transactions on Industry Applications, vol. 47, no. 4, s. 1527–1535.

[17[ Karimi, M., Mokhlis, H., Naidu, K., Uddin, S., Bakar, A.H.A., 2016, Photovoltaic Penetration Issues and Impacts in Distribution Network – A Review, Renewable Energy, vol. 53, s. 594–605.

[18] Kolagar, A.D., Shoulaie, A., 2011, Reduction of Undesired Harmonic Components in a Steel Industrial Plant with DC Electric Arc Furnaces, Proc. of 2nd Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Tehran, Iran.

[19] Kovaltchouk, T., Armstrong, S., Blavette, A., Ahmed, H.B., Multon, B., 2016, Wave Farm Flicker Severity: Comparative Analysis and Solutions, Renewable Energy, vol. 91, s. 32–39.

[20] Otomański, P., 2010, Wpływ wahań napięcia na wybrane źródła promieniowania optycznego, Pomiary. Automatyka. Kontrola, R. 56, nr 9, s. 1077–1080.

[21] Pepliński, M., 2014, Wpływ subharmonicznych i interharmonicznych napięcia na prądy i temperaturę uzwojeń silników indukcyjnych małych mocy, rozprawa doktorska, Akademia Morska w Gdyni, Gdynia.

[22] Sürgevil, T., Akpnar, E., 2009, Effects of Electric Arc Furnace Loads on Synchronous Generators and Asynchronous Motors, Proc. of International Conference on Electrical and Electronics Engineering ELECO, Bursa, Turkey, s. I-49 – I-53.

[23] Tennakoon, S., Perera, S., Robinson, D., 2008, Flicker Attenuation, Part I: Response of Three-phase Induction Motors to Regular Voltage Fluctuations, IEEE Transactions on Power Delivery, vol. 23, no. 2, s. 1207–1214.

[24] Yilmaz, I., Ermis, M., Cadirci, I., 2012, Medium-Frequency Induction Melting Furnace as a Load on the Power System, IEEE Transactions on Industry Applications, vol. 48, no. 4, s. 1203–1214.

Remove [1] de Abreu, J.P.G., Emanuel, A.E., 2002, Induction Motor Thermal Aging Caused by Voltage Distortion and Imbalance: Loss of Useful Life and its Estimated Cost, IEEE Transactions on Industry Applications, vol. 38, no. 1, s. 12–20.

[2] ANSYS Technical Documentation, http://www.ansys.com.

[3] Baptista, J., Gonçalves, J., Soares, S., Valente, A., Morais, R., Bulas-Cruz, J., Reis, M.J., 2010, Induction Motor Response to Periodical Voltage Fluctuations, Proc. XIX International Conference on Electrical Machines ICEM, Roma, Italy.

[4] Basic, D., 2010, Input Current Interharmonics of Variable-Speed Drives Due to Motor Current Imbalance, IEEE Transactions on Power Delivery, vol. 25, no. 4, s. 2797–2806.

[5] Bolen, M.H.J., Gu, I.Y.H., 2006, Signal Processing of Power Quality Disturbances, Wiley, New York.

[6] Chang, G.W., Chen, S.K., Su, H.J, Wang, P.K., 2011, Accurate Assessment of Harmonic and Interharmonic Currents Generated by VSI-fed Drives under Unbalanced Supply Voltages, IEEE Transactions on Power Delivery, vol. 26, no. 2, s. 1083–1091.

[7] Deokar, S.A., Waghmare, L., Jadhav, G.N., 2010, Voltage Flicker Assessment of Induction Motors Used in the Integrated Water Pumping Station, Proc. of Joint International Conference on Power Electronics, Drives and Energy Systems (PEDES), Power India, New Delhi.

[8] Feese, T., Maxfield, R., Hilscher, M., 2008, Torsional Vibration Problem with Motor/ID Fan System Due to PWM Variable Frequency Drive, 37th Turbomachinery Symposium, Houston, TX, s. 9–11.

[9] Fuchs, E.F., Roesler, D.J., Masoum, M.A.S., 2004, Are Harmonics Recommendations According to IEEE and IEC Toorestrictive? IEEE Transactions on Power Delivery, vol. 19, no. 4, s. 1775–1786.

[10] Gallo, D., Langella, R., Testa, A., Emanuel, A., 2004, On the Effects of Voltage Subharmonics on Power Transformers: a Preliminary Study, 11th International Conference on Harmonics and Quality of Power, ICHPQ, Lake Placid, s. 501–506.

[11] Gnaciński, P., Hallmann, D., 2015, Badania wstępne silnika indukcyjnego zasilanego napięciem zawierającym subharmoniczne z wykorzystaniem metod polowych, Maszyny Elektryczne, Zeszyty Problemowe, 4(108), s. 65–69.

[12] Gnaciński, P., Hallmann, D., 2016, Wstępne badania wahań prędkości obrotowej silnika indukcyj¬nego zasilanego napięciem zawierającym subharmoniczne, Prace Instytutu Elektrotechniki, nr 275, s. 57–66.

[13] Gnaciński, P., Hallmann, D., 2017, Badania wstępne silnika indukcyjnego w warunkach wahań napięcia z wykorzystaniem metod polowych, Zeszyty Naukowe Akademii Morskiej w Gdyni, nr 98, s. 64–70.

[14] Gnaciński, P., Pepliński, M., 2014, Induction Cage Machine Supplied with Voltage Containing Subharmonics and Interharmonics, IET Electric Power Applications, vol. 8, no. 8, s. 287–295.

[15] Hanzelka, Z., 2011, Jakość energii elektrycznej. Wahania napięcia, http://twelvee.com.pl/pdf/ Hanzelka/ cz_3_pelna.pdf.

[16] Hsu, C.T., Chen, C.S., Lin, C.H., 2011, Electric Power System Analysis and Design of an Expanding Steel Cogeneration Plant, IEEE Transactions on Industry Applications, vol. 47, no. 4, s. 1527–1535.

[17[ Karimi, M., Mokhlis, H., Naidu, K., Uddin, S., Bakar, A.H.A., 2016, Photovoltaic Penetration Issues and Impacts in Distribution Network – A Review, Renewable Energy, vol. 53, s. 594–605.

[18] Kolagar, A.D., Shoulaie, A., 2011, Reduction of Undesired Harmonic Components in a Steel Industrial Plant with DC Electric Arc Furnaces, Proc. of 2nd Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Tehran, Iran.

[19] Kovaltchouk, T., Armstrong, S., Blavette, A., Ahmed, H.B., Multon, B., 2016, Wave Farm Flicker Severity: Comparative Analysis and Solutions, Renewable Energy, vol. 91, s. 32–39.

[20] Otomański, P., 2010, Wpływ wahań napięcia na wybrane źródła promieniowania optycznego, Pomiary. Automatyka. Kontrola, R. 56, nr 9, s. 1077–1080.

[21] Pepliński, M., 2014, Wpływ subharmonicznych i interharmonicznych napięcia na prądy i temperaturę uzwojeń silników indukcyjnych małych mocy, rozprawa doktorska, Akademia Morska w Gdyni, Gdynia.

[22] Sürgevil, T., Akpnar, E., 2009, Effects of Electric Arc Furnace Loads on Synchronous Generators and Asynchronous Motors, Proc. of International Conference on Electrical and Electronics Engineering ELECO, Bursa, Turkey, s. I-49 – I-53.

[23] Tennakoon, S., Perera, S., Robinson, D., 2008, Flicker Attenuation, Part I: Response of Three-phase Induction Motors to Regular Voltage Fluctuations, IEEE Transactions on Power Delivery, vol. 23, no. 2, s. 1207–1214.

[24] Yilmaz, I., Ermis, M., Cadirci, I., 2012, Medium-Frequency Induction Melting Furnace as a Load on the Power System, IEEE Transactions on Industry Applications, vol. 48, no. 4, s. 1203–1214.

Published

2018-12-31

How to Cite

Gnaciński, P., & Hallmann, D. (2018). The Influence of Winding Temperature on Electromagnetic Torque of Induction Motor under Voltage Containing Subharmonics. Scientific Journal of Gdynia Maritime University, (103), 166–173. https://doi.org/10.26408/103.13

Issue

Section

Articles