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Abstract: AIS (Automatic Identification System) is a telecommunication system created to 
enable ships to transmit information regarding their trajectories (such as their position, speed, 
course, etc.) to other ships and shore stations. With the use of AIS, collisions between ships 
can be avoided. Unfortunately, AIS suffers from some technical issues that lead to part of the 
transmitted data being damaged (incorrect or missing). This paper contains a review of 
machine learning based methods of reconstructing this damaged AIS data as well as 
examples of inspiration from other telecommunication systems for dealing with this kind of  
a problem. Finally, after analysing frameworks available in the relevant literature, a novel 
algorithm for AIS data reconstruction is briefly presented. 

Keywords: AIS data analysis, trajectory reconstruction, machine learning, 
telecommunication. 

1.  INTRODUCTION 

AIS (Automatic Identification System) is a telecommunication system that enables 
ships to transmit information regarding their trajectories to other ships and marine 
equipment, such as shore stations. For example, messages called position reports 
(messages of types 1-3 out of all 27 types that AIS can carry) contain fields such as 
the ship’s position (longitude and latitude), speed and course over ground, 
navigational status, ID (Maritime Mobile Service Identity, MMSI) etc. [ITU 2014; 
ESA 2019]. 

There are two segments of AIS. Terrestrial AIS [ITU 2014] enables line-of-
sight communication (ship-to-ship, ship-to-shore) and utilises two VHF (Very High 
Frequency) frequencies: 161.975 and 162.025 MHz with a 25-kHz bandwidth. Its 
most appreciated feature is its ability to synchronise the communication between 
many AIS transponders sharing the same wireless medium (using Self-Organized 
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Time Division Mutliple Access, SOTDMA). Nonetheless, its main drawback is its 
range of up to 74 km. To overcome this limitation, a satellite segment of AIS (SAT-
AIS) has been introduced [ESA 2019]. SAT-AIS enables communication within  
a much broader area thanks to the satellite (mostly on Low Earth Orbit) mediating 
the transmission between ships from many terrestrial cells. Unfortunately, even 
SAT-AIS suffers from its own technical limitations – the most crucial of these being 
the fact that  communication between terrestrial cells is not synchronised, and  
a satellite may therefore receive messages from many ships at the same time (packet 
collision [Wawrzaszek et al. 2019]). Naturally, if so, it is not able to correctly process 
them, which causes some parts of AIS data to be damaged (incorrect or missing). 

There are some approaches to dealing with the issue of packet collision.   
Statistical modelling [Seta et al. 2016] or the Viterbi algorithm [Prevost et al. 2012] 
are two examples. However, with the recent increase of available computational 
power,  the popularity of modern computational methods such as machine learning 
has also  grown, and these can be seen in a wide range of literature dealing with 
missing AIS data imputation. 

Machine learning [Shai and Shai 2014] (ML) offers algorithms that can enhance 
their performance by being exposed to more and more data: they model some 
phenomena by defining a structure (or relationships) within the data and are able to 
update the parameters describing the model as more data are available,  rather than 
being explicitly programmed and following some pre-defined rules. Machine 
learning approaches can be divided into two main groups: approaches involving   
supervised learning (where each data record provided contains the expected output, 
called a label) and approaches involving unsupervised learning (when data labels are 
not included, and algorithms need to find the expected output by themselves). 

Since ships using AIS transponders transmit numerous AIS messages, AIS is  
a great source of data that machine learning algorithms can learn from, not only for 
analysing maritime traffic, but also for defining correct/incorrect trajectory points 
and reconstructing the wrong ones. Here, in the next two sections of this paper,  
a review of such ML-based approaches for reconstruction of AIS and other 
telecommunication systems data is presented. After an analysis of existing methods, 
in Section 4 a novel framework is proposed for quick, real-time AIS message 
reconstruction, while Section 5 concludes the findings. 

2.  RECONSTRUCTION OF AIS DATA USING MACHINE LEARNING 

2.1.  Prediction of ships’ trajectories 

The issue of predicting the ship’s trajectory is crucial for maintaining safety on the 
sea and for ship collision prevention [Zhang et al. 2015]: to know exactly where  
a vessel is, either when there is a connectivity failure or data received from a vessel 
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might be damaged and we cannot fully trust them, then there is a need for data 
reconstruction. 

What can be seen by analysing the available literature regarding this topic is 
that deep learning is widely used here. Deep learning is a subset of machine learning 
which utilises neural networks – special algorithmic architectures based on many 
layers of activations (neurons) and connections between them (with corresponding 
weights), which can model sophisticated phenomena, such as the  behaviour of  
a sailing vessel. For instance, in one paper [Zhang, Ni and Xu 2020], a classic neural 
network is used, in [Li et al. 2020], there is a U-Net convolutional network, in  
[Jin et al. 2020] there is a recurrent, LSTM (Long Short Term Memory) neural 
network and in [Liang et al. 2019] an ensemble of LSTMs is utilised to perform the 
task of ship trajectory prediction. In those approaches, neural networks were trained 
on AIS data and learned the relations between the features describing trajectories, 
such as the ships‘ position, speed and course, to be able to predict  
(in the form of a regression task) the current or missing position of a moving ship. 

However, it must be emphasised that training a neural network in general 
requires a lot of data, memory and computations. Therefore, other methods of 
reconstructing ships‘ trajectories were also investigated: based on cubic spline 
interpolation [Zhang et al. 2018] or Fermat spiral fitting [Shi et al. 2019].  

2.2.  Establishing trajectory trends and anomaly detection in AIS data 

Many existing works focus not necessarily on the entire process of ship trajectory 
reconstruction, but more heavily on one step of that process, which is  determining 
which parts of recorded AIS (trajectory-related) data actually require reconstruction. 
Such data is often considered an anomaly, hence, we will call this step anomaly 
detection.  

Usually, to decide if a trajectory point seems valid (not an anomaly), there is  
a need to analyse the available data first to distinguish how the correct trajectories 
look like. One popular method of doing so is to model the vessels’ trajectories using 
what is called waypoints, that is to say, by defining characteristic points in a given 
area where usually ships’ trajectory changes: vessels tend to turn, speed up, start or 
stop. Those points form a graph (they are its vertices), whose edges are the actual 
trajectory steps. A sophisticated system that uses waypoints is TREAD, described in 
[Pallotta, Vespe and Bryan 2013]. Other works doing so are, for instance, 
[Kontopoulos, Varlamis and Tserpes 2019] or [Machado et al. 2019]. In [Dobrkovic, 
Iacob and van Hillegersberg 2016], waypoints are identified using a genetic 
algorithm. 

Naturally, defining waypoints is not the only possible method of determining 
trajectory trends. For instance, other approaches involve using  Gaussian processes 
[Kowalska and Peel 2012] or decision trees [Wang et al. 2020].  
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There are also many ways of identifying outlying trajectory points  
(as mentioned before, we will call them outliers) or even parts of trajectories, mostly 
those that do not find the defined trend. In [Singh and Heymann 2020], a 3-layer 
artificial neural network performs anomaly detection, while in [Xia and Gao 2020], 
a Bayesian recurrent network does so using binary classification (outlier/not outlier). 
Paper [Lei and Mingchao 2018] proposes a different approach, based on calculating 
distances between datapoints (using different metrics): a datapoint that is far away 
from the other should be considered an anomaly. On the other hand, according to 
[Kontopoulos, Varlamis and Tserpes 2019], an anomalous datapoint is one that is 
not assigned to any cluster with other datapoints. Finally, a masked autoregressive 
normalising flow for trajectory data anomaly detection (not AIS but based on 
Microsoft GeoLife dataset) was described in [Dias et al. 2020]. 

2.3.  Clustering in AIS data analysis 

Clustering algorithms (which are used for dividing dataset into clusters so that 
datapoints in one cluster are more similar to each other than to any point from other 
clusters), which belong to the unsupervised learning class, are often found helpful in 
analysing AIS data and vessels’ trajectories. 

When it comes to finding trajectory waypoints (described earlier) for 
determining trajectory trends for anomaly detection, this is often initially done by 
clustering the available trajectory points [Pallotta, Vespe and Bryan 2013].  
Moreover, even if a trajectory trend is not described by waypoints, clustering often 
assists in determining it by collecting similar trajectories [Lei and Mingchao 2018] 
or even finding isolated points that could be potential outliers [Li, Zhang and Zhu  
2016].  Here, it seems as though  DBSCAN is a popular choice of clustering 
algorithm [Pallotta, Vespe and Bryan 2013; Li, Zhang and Zhu 2016; Lei and 
Mingchao 2018], since it manages to create clusters of different shapes (not only  
a sphere-like shape in a given dimension), as long as the clustered datapoints are 
connected (in a sense of data density) to each other [Ester et al. 1996]. 

On the other hand, other clustering algorithms also appear in the literature, as  
a support for AIS data analysis. For example, in [Hanyang, Xin and Zhenguo 2019], 
the use of k-means as the algorithm for AIS data clustering and trajectory extraction 
was examined, together with the elbow method for determining the optimal number 
of clusters in a dataset; hierarchical clustering [Wang, Gao and Yang 2017] or even 
neural networks (in the form of a convolutional auto-encoder) [Wang et al. 2020] 
were also researched. In [Theodoropoulos, Tritsarolis and Theodoridis 2019]  
a sophisticated algorithm called EvolvigClusters was proposed, which imposes both 
spatial and temporal restrictions on the  clusters obtained. 
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3.  PROBLEM OF DAMAGED DATA IN OTHER TELECOMMUNICATION 
SYSTEMS  

To investigate the methods of dealing with damaged AIS data more broadly, it is 
advisable to examine which machine learning based approaches are used in relation 
to other telecommunication systems – for example, computer networking. 

It appears that, in most cases, the existing frameworks focus more on 
reconstruction of the payload of the data unit (either frame or packet) damaged 
during transmission, rather than attempting to reconstruct the whole data unit (since 
the data headers contain mostly information relevant to the transmission only, such 
as source and destination address). The works that can be found describe predicting 
missing images [Zhang et al. 2018], video frames [Yu et al. 2020] or audio samples 
[Hsu et al. 2012]. What can be seen is that in most cases, it is multimedia payload 
that is the object of an attempted re-creation. The explanation lies within the 
specification of how the networking protocols work. It is worth remembering that 
there are the two main network protocols on the transport layer of the OSI model: 
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) 
[PyNetLabs 2022]. TCP provides sophisticated mechanisms for ensuring 
transmission reliability: acknowledging successful reception of data and 
retransmission parts of transmitted data which reception was not acknowledged. 
Therefore, TCP is mainly used for transmission of sensitive data: e-mails, website 
content, files, etc. Actually, the need for reconstruction of data carried by TCP is 
minimal. The other protocol, UDP, does not ensure such transmission reliability. 
Moreover, it is UDP that is usually used for transmission of multimedia streams – 
hence, that is why we often find works about multimedia data being reconstructed. 
For example, in [Yu et al. 2020], a complex convolutional neural network 
architecture is designed to reconstruct missing video frames. Some works focus on 
re-creation of damaged speech samples: in the literature, we can find approaches 
based on old methods, such as interpolation and extrapolation [Husain and 
Cuperman 1995], but also modern ones – for instance, in [Hsu et al. 2012], a SVM 
classifier helps classify speech samples (into voiced or voiceless samples, for 
example) to make further reconstruction easier.  

Other researchers attempted to bypass the reconstruction problem by focusing 
more on predicting the network overload to be able to counteract and, consequently, 
reduce the amount of lost data packets or frames. Authors of [Faten and Elbiaze 
2009] proposed a neural network (using fuzzy logic) for this purpose. They have also 
examined several autoregressive models which, by analysing captured network 
traffic, try to predict its peak in the future. Similarly, in [Balaji, Duraisamy and 
Umapathi 2010], an approach based on clustering is presented. 

Aside from analysing network using  the TCP/IP stack, there are also attempts 
for reconstruction of data flowing through other telecommunication systems.  
In [Zhang et al. 2018], a reconstruction of satellite images is examined; here, again, 
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the convolutional neural network is used, which learns through relationships 
between existing data in a spatial, spectral and time domain. Research published in 
[Alippi, Boracchi and Roveri 2012] and [Pan and Li 2010] deals with the problem 
of reconstructing data from a network of sensors using machine learning. The first 
work presents the usage of the K Nearest Neighbour algorithm, while in the latter  
a recurrent neural network was trained to find spatial and temporal dependencies 
between data from neighbouring sensors to reconstruct the missing parts. 

Inspirations from these works can be helpful in the problem of AIS data 
reconstruction. Here, we should also focus on prediction of the actual payload of AIS 
messages (i.e. the corresponding message fields: longitude, latitude, speed, course, 
ship identifier, etc.) rather than trying to recover the entire message bitwise. 
Moreover, the search for finding spatial and temporal relations between consecutive 
messages might be helpful: knowing where the analysed ship was in the past and 
how it moved might be crucial for predicting its current position. 

4.  PROPOSED APPROACH FOR DAMAGED AIS DATA 
RECONSTRUCTION 

While analysing the findings of the literature review, it can be noticed that there is 
still a need for creating a fast and reliable AIS message reconstruction framework 
for detecting damaged parts of AIS data (not only containing position information) 
and predicting their correct form in real-time operation (otherwise two ships may 
eventually collide), without the time-consuming process of analysing long-term ship 
trajectory trends within a given area (on the contrary, we would like to focus on 
determining the correct relations between AIS message fields to find those that do 
not correspond to the relations and, consequently, reconstruct their values, regardless 
of whether the trajectory itself corresponds to the overall trend or not). 

Our attempt to fulfil these assumptions is presented (in the form of charts)  
in Figure 1. In short, the proposed framework can be divided into 3 stages: 
1. Clustering stage. In this stage, AIS position reports recorded from a given area 

and given time interval are divided into separate groups (clusters) by using 
clustering algorithms, such as DBSCAN [Ester  et al. 1996]. The goal of this step 
is to distinguish individual ships’ trajectories, regardless of whether the MMSI 
field value received is correct or not (as a reminder, MMSI is transmitted as  
a part of AIS message and may also be  damaged). Trajectories obtained this way 
can be further analysed to find abnormal points within them. If a point is so 
distant from other points from a given dataset that the clustering algorithm puts 
it into a standalone, 1-element cluster, it should also be considered an anomaly. 
The performance of using DBSCAN algorithm in this stage, as well as 
hyperparameter tuning, is presented in [Mieczyńska and Czarnowski 2021]. 
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2. Anomaly detection stage.  During the second stage, each cluster (i.e. ship 
trajectory) is analysed to find potentially damaged datapoints (AIS messages), 
which we call anomalies. Not only do the whole damaged messages need to be 
identified, but also the exact location where the damage occurred (corrupted 
field) and, if MMSI is corrupted/unknown, also the ship that the given message 
originated from. The proposed anomaly detection stage is a 2-step process.  
At first, we take a look at the inside of the aforementioned 1-element clusters 
[Szarmach and Czarnowski 2022]. Since the origin of such messages is unknown 
(as they are not related to any other messages to form a trajectory cluster, and 
moreover, we cannot be certain if its MMSI field is correct or not), we use the K 
Nearest Neighbour algorithm [Altman 1992] to decide which other cluster seems 
the most similar to that message. Then, we analyse the values from each message 
field (of the following: dynamic – longitude, latitude, speed and course over 
ground, static – MMSI, navigational status and special manoeuvre indicator) and 
we compute the wavelet transform [Debnath 1998] of the waveform of 
consecutive values from the given field and ship (more precisely, we calculate 
the relative difference between the maximum values of the wavelet transforms 
and standard deviations of such waveforms with and without the potentially 
damaged fields). The damage can be recognised by a sudden value change, thus, 
the differences  calculated should be high. The pre-trained classifiers (such as 
Random Forest [Ho 1998] or XGboost [Chen and Guestrin 2016], one for each 
field) analyse the differences obtained and decide whether to consider them (and 
their corresponding AIS message field) anomalous or not – see this method’s 
performance results in [Szarmach and Czarnowski 2022]. Then, we examine the 
proper, multi-element clusters. For dynamic fields of such messages, we create 
specific vectors (containing the values and their differences from the analysed, 
previous and next message in a batch from the given ship) and again, let pre-
trained Random Forest or XGboost classifiers decide if these vectors contain 
correct relations between their features  or not. In the latter case, they must be 
reconstructed. For static fields, we use an Isolation Forest [Liu, Ting and Zhou 
2008] to find anomalous values directly. We believe that this method deals with 
finding damage even when the control sum field fails to do so (such as GPS drift) 
– see [Szarmach and Czarnowski 2023] for more details and results. 

3. Prediction stage. After the AIS message fields that require correction are found, 
the process of actual reconstruction of their correct values has to be executed, 
possibly using prediction algorithms. However, this stage is yet to be 
implemented and researched. 

We find the results presented in given references promising (the proposed 
algorithm managed to find 90%-95% messages and 58%-74% of their fields with  
2 bits artificially damaged [Szarmach and Czarnowski 2023]).Therefore, we will 
continue our work on developing this framework in the future. 
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Fig. 1. Proposed general algorithm 

Source: own study. 

 



Reconstructing Damaged Data in AIS  
and Other Telecommunications Systems: A Survey  

 

Scientific Journal of Gdynia Maritime University, No. 127, September 2023 23 

5.  CONCLUSIONS 

AIS is an important telecommunication system for maintaining the safety of the 
maritime transport. Unfortunately, due to some technical issues, it struggles against 
some parts of its data being damaged during transmission. Many researchers around 
the globe are attempting to use advanced and modern machine learning algorithms 
to reconstruct the lost or incorrect trajectory points to make AIS data clean.  
The proposed approaches varies, from those focusing on detecting trajectory trends 
(usual ship trajectories) to find outlying datapoints that require correction (often 
supported by clustering algorithms), to those conducting real reconstruction, often 
by using neural networks. Both supervised and unsupervised learning algorithms can 
be observed in the literature.  

In this work, we gathered the necessary knowledge of existing AIS data 
reconstruction frameworks (and we are also seeking similar methods in other 
telecommunication systems) and proposed our own, 3-step ML-based algorithm, 
which we find promising. In the future, we will complete our framework mainly by 
creating a satisfying algorithm in the final (prediction) stage which, at the time of 
writing this publication, is yet to be done. 
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