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Abstract: Integer factorization is one of the oldest mathematical problems. Initially, the 

interest in factorization was motivated by curiosity about behaviour of prime numbers, which 
are the basic building blocks of all other integers. Early factorization algorithms were not very 
efficient. However, this dramatically has changed after the invention of the well-known RSA 
public-key cryptosystem. The reason for this was simple. Finding an efficient factoring 
algorithm is equivalent to breaking RSA. 
The work overviews development of integer factoring algorithms. It starts from the classical 
sieve of Eratosthenes, covers the Fermat algorithm and explains the quadratic sieve, which is 
a good representative of modern factoring algorithms. The progress in factoring is illustrated 
by examples of RSA challenge moduli, which have been factorized by groups of mathemati-
cians and cryptographers. Shor's quantum factorization algorithm with polynomial complexity 
is described and the impact on public-key encryption is discussed. 

Keywords: Cryptography, Number Theory, Public-key Cryptography, Factorization, RSA 

Cryptosystems, Quantum Computing, Shor Algorithm. 

1. INTRODUCTION 

Factoring or decomposition of integers into their prime factors is one the oldest 

mathematical problem that has been under investigation over centuries and has 

attracted attention of many best mathematical minds. Eratosthenes (276–194 BC) 

was the first mathematician known to us who designed a simple algorithm for  

finding prime factors. It is called sieve of Eratosthenes and enumerates all primes 

smaller than a given integer N. Other eminent mathematicians who made various 

contributions to factoring are Fermat (1607–1665) and Euler (1707–1783). 

Application of mechanical calculators in early 20-th century and computers in its 

middle gave mathematicians tools for development of new and more efficient  

integer factorization algorithms. But even then factoring integers larger than  

100-decimal digits long was beyond anyone's dream. A significant exceleration of 

theory and practice of factoring is due to development of the famous RSA public key 

encryption algorithm [Rivest, Shamir and Adleman 1978]. It turns out that RSA 
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security can be easily broken if an adversary can factor the public modulus.  

As a result, integer factorization (which is a part of Number Theory) has also become 

a part of Cryptography. 

Modern algorithms are able to factor integers containing more than  

200-decimal digits. Despite evident progress, we still do not have polynomial-time 

algorithms. The best ones have sub-exponential complexity. A breakthrough has 

come when Shor [1997] published his quantum factorization algorithm, which is 

polynomial-time. This breaks RSA assuming that we are able to build quantum 

computers (or at least quantum factorization devices). In the work we review integer 

factorization algorithm and concentrate on algorithms for factoring integers in  

a general form (as opposed to special-form integers). 

2. CLASSICAL ALGORITHMS 

2.1. Sieve of Eratosthenes 

The original algorithm can be used to primality testing and factoring. The version 

given below finds factors of a given odd integer N. Note that for an even integer,  

it is easy to divide it by a sequence of 2's so we get an odd integer. The notation i|N 

means that integer i divides N (without a remainder).  

 

 

The algorithm runs through  
2

N  steps and it is easy to see that its complexity 

is O )( N  or equivalent O (2n/2), where n =  N2log  is the number of bits needed to 

represent the integer N. Its high (exponential) complexity restricts its application to 

relatively short integers (say, no longer than 20 decimal digits). 
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2.2.   Fermat Algorithm 

The observation made by Fermat is that it is easy to find nontrivial factors if an 

integer N can be represented as 

N = x2 – y2 = (x – y) (x + y) 

Note then  p = (x – y) and q = (x + y) are nontrivial factors of N.  

 

The algorithm works best if N has two factors of similar sizes. Let us have a closer 

look at complexity of the algorithm. Let us start from rather trivial observation.  

The factors found by the algorithm are 

p = x + y and q = x – y 

and p > q. The above relations can be represented as follows: 

2

qp
x


      and 

2

qp
y


  

Note the algorithm exits the while loop, when 
2

qp
x


 and finds the solution. 

Therefore the number of steps in the algorithm is the distance between the initial 

value of x =  N and the final value .
2

qp
x


  The following sequence describes 

computational complexity of the algorithm 

ℂ(𝑝, 𝑞) =
𝑝 + 𝑞

2
− √𝑁 =

𝑝 + 𝑞 − 2√𝑝𝑞

2
=

(√𝑝 − √𝑞)2

2
=

(𝑝 − √𝑁)2

2𝑝
 

Clearly, it depends on how far away the factors 𝑝 and 𝑞 are from √𝑁. Let us 

investigate the case for which ℂ(𝑝, 𝑞) = 1, i.e. the algorithm needs one step only or  

(𝑝 − √𝑁)2 = 2𝑝  ⟶  𝑝 − √2√𝑝 − √𝑁 = 0 
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The quadratic equation has two solutions  

√𝑝 =
√2 ± √2 + 4√𝑁

2
    this implies    𝑝 = 1 ± √1 + 2√𝑁 + √𝑁 

It means that the difference  

|𝑝 − √𝑁| = |1 ± √1 + 2√𝑁| = 𝑂(𝑁1/4) 

is small enough the Fermat algorithm works instantanously. On the other hand, if the 

factors are far away from √𝑁 or they have only trivial factors (the integer 𝑁 is 

prime), then ℂ(𝑝, 𝑞) = 𝑂(𝑁).  

3. QUADRATIC SIEVE 

The idea of quadratic sieve (QS) can be traced back to Kraitchik [Pomerance 1996]. 

The starting point is the Fermat Algorithm. The following list describes modifi-

cations and improvements. 

o Instead of considering the relation 𝑁 = 𝑥2 − 𝑦2 = (𝑥 − 𝑦)(𝑥 + 𝑦), we can use 

a congruence  

𝑥2 − 𝑦2 = 0 mod 𝑁. 
 

o To find the above relation, we use function 𝑄(𝑥) = 𝑥2 − 𝑁, where 

𝑥 ∈ 𝑋 = {⌈√𝑁⌉, ⌈√𝑁⌉ + 1, … , ⌈√𝑁⌉ + ℓ}. Note that selection of 𝑥 that is closest 

to ⌈√𝑁⌉ guarantees that 𝑥2 − 𝑁 grows slowly so it is much smaller than 𝑁. Now 

we are looking for a collection of 𝑥 ∈ 𝐶 ⊂ 𝑋 such that  

∏ 𝑥2

𝑥∈𝐶

= ∏ 𝑄

𝑥∈𝐶

(𝑥) = 𝑦2 (mod 𝑁). 

o The trick is to find ∏ 𝑄𝑥∈𝐶 (𝑥) so it is equal to 𝑦2. As the integers 𝑄(𝑥) are 

relatively short, we can try to factorise them using a factor base of the smallest 

consecutive primes. Assume that our factor base is  

𝐹𝐵 = {2, 3, 5, 7, … 𝛼}, 

where 𝛼 is the largest prime in FB. Now we use the primes from FB to factorise 

𝑄(𝑥); 𝑥 ∈ 𝑋. Denote 𝑋′ ⊂ 𝑋 such that for each 𝑥 ∈ 𝑋′, 𝑄(𝑥) is fully factorised  

(i.e. all their factors are in FB). Finally, we choose a subset 𝐶 ⊂ 𝑋′ such that  

∏ 𝑄

𝑥∈𝐶

(𝑥) = 𝑝𝑘1

𝑒𝑘1 ⋯ 𝑝𝑘𝑚

𝑒𝑘𝑚  (mod 𝑁) 
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where all primes 𝑝𝑘𝑖
∈ 𝐹𝐵 and all exponents 𝑒𝑘𝑖

 are even (𝑖 = 1, 2, … , 𝑚). 

Consequently, we obtain  

𝑢 = ∏ 𝑥

𝑥∈𝐶

 mod 𝑁  and 𝑣 = 𝑝𝑘1

𝑒𝑘1/2
⋯ 𝑝𝑘𝑚

𝑒𝑘𝑚/2
 (mod 𝑁). 

This is to say that our target quadratic relation is u2 = v2  mod N.  

The steps listed above lead us to the following algorithm. 

 

 

4. CONTINUED FRACTION AND FACTORIZATION 

It is not too difficult to notice that integers 𝑄(𝑥) grow while 𝑥𝑖 = √𝑁 + 𝑖 is getting 

bigger. Consider 

𝑄(𝑥𝑖) = (√𝑁 + 𝑖)2 − 𝑁 = 𝑖(2√𝑁 + 𝑖) 

Assuming that 𝑖 ≪ √𝑁 and 𝑖 = 1, 2, …, then integers 𝑄(𝑥𝑖) grow linearly with √𝑁. 
This implies that factorization of 𝑄(𝑥𝑖) using the factor base FB becomes more and 

more time consuming. Lehmer and Powers [1931] suggested to replace the  
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sequence of 𝑄(𝑥) by a sequence generated by a continued fraction expansion of √𝑁. 
Let as denote 

√𝑁 = [𝑎0, 𝑎1, 𝑎2, 𝑎3, … ] = 𝑎0 +
1

𝑎1 + 1

𝑎2+ 1
𝑎3+⋯

 

The idea is to approximate √𝑁 by consecutive continued fraction convergents, i.e. 

𝑝𝑘

𝑞𝑘
= [𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘], 

where k = 1,2, ... . This means that N can be approximated by (𝑝𝑘
𝑞𝑘

)
2

.  In other words 

we choose 

𝑄(𝑘) = 𝑝𝑘
2 − 𝑞𝑘

2𝑁 =⇒ 𝑄(𝑘) = 𝑝𝑘
2   (mod N) 

The advantage of generation of 𝑄(𝑘) over 𝑄(𝑥) is that |𝑄(𝑘)| < 2√𝑁 for all k.  

In other words, 𝑄(𝑘) does not grow with k and its factorization using the FB takes  

a constant workload. 

5. QS EXAMPLE 

Let us illustrate steps of the algorithm using a simple numerical example [Pieprzyk, 

Hardjono and Seberry 2003]. Assume that we wish to find factors of N = 4841. First 
we generate a sequence of quadratic residues 𝑄(𝑥). To keep 𝑄(𝑥) as small as 

possible, we find 𝑚 = ⌊√𝑁⌋ = 69 and compute 

 𝑄(𝑥) = (𝑚 + 𝑥)2 − 𝑁                                          (1) 

for 𝑥 = −8 … , −1, 0, 1, … , 8. The sequence of Qs is as follows: 
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A factor base is a collection of the smallest consecutive primes so  

FB = {–1, 2, 3, 5, 7, 11}. Note that Q(–8), Q(–4), Q(–2), Q(0), Q(2), Q(3), and Q(6) 

have all their factors in the set FB. These are the required full factorizations. There 

are eight fully factored Qs and the number of elements in the set FB is six so there is 

a good chance to find a quadratic con-gruence 𝑢2 ≡ 𝑣2 (mod N). For a fully factored 

𝑄(𝑥), we create a binary vector 𝐹(𝑥) of the length ℓ|𝐹𝐵| whose coordinates indicate 

the presence or absence of an odd factor from FB. Thus, for 𝑄(−8), the vector 

 𝐹(−8 = [1, 1, 0, 1, 1, 0] as its factorization contains –1 and primes 2, 5 and 7.  

The collection of all vectors F  for fully factored Qs, is: 

 

 
 

The vectors 𝐹(𝑥) form the rows of our matrix 𝐹: 
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Now we look for a collection of rows such that  

𝐹(𝑖1)  𝐹(𝑖2) … 𝐹(𝑖𝑟) = 0, 

where  stands for the bit-by-bit XOR operation. This step can be done using 

standard row-reducing techniques. Observe that 𝐹(−4)  F(−2)  F(3) = 0.  

Take the corresponding 𝑄(−4), 𝑄(−2) and 𝑄(3) and write them as: 

𝑄(−4) = (69 − 4)2  mod 4841 

𝑄(−2) = (69 − 2)2  mod 4841 

𝑄(3) = (69 + 3)2   mod 4841 

On the other hand, we can use their factorizations for a second set of relations: 

𝑄(−4) ≡ (−1) ∙ 23 ∙ 7 ∙ 11   (mod 4841) 

𝑄(−2) ≡ (−1) ∙ 25 ∙ 11    (mod 4841) 

𝑄(3) ≡ 73    (mod 4841) 

The requested congruence 𝑢2 ≡ 𝑣2 (mod N) can be constructed as follows: 

𝑄(−4)𝑄(−2)𝑄(3) ≡ 28 ∙ 74 ∙ 112    (mod 4841) 

Note that the left hand side is 𝑄(−4)𝑄(−2)𝑄(3) = (69 – 4)2(69 – 2)2(69 + 3)2 

and the right and side is 28 ∙ 74 ∙ 112. Therefore, both sides are powers of two.  

The left integer 

u = (69 – 4)(69 – 2)(69 + 3) = 3736    (mod 4841) 

and the right integer 

𝑣 = √(−1)23 ∙ 7 ∙ 11 ∙ (−1)25 ∙ 11 ∙ 73 = 24 ∙ 72 ∙ 11 ≡ 3783 (mod 4841). 

As 𝑢 + 𝑣 ≠ 𝑖 ∙ 𝑁, we obtain the factors of N. Indeed, gcd(3736 – 3783, 4841) = 47 

and gcd(3736 + 3783, 4841) = 103. So N = 47  103. 

6. FACTORIZATION OF RSA MODULI 

Note that the security of RSA cryptosystem is based on the assumption that the 

factorization of the modulus N is "difficult". Given an RSA encryption with the 

modulus N and public key e. Assume that an adversary is able to factor N and finds 

its factors p and q such that N = pq. The adversary is able to compute the secret key 

d  as 
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    1 mod 1 1d e p q
     

and break the encryption. 

In 1991 RSA Security (the company founded by the inventors of RSA) 

announced a list of challenge moduli of various lengths and prices for their 

factorization. The shortest modulus includes 100 decimal digits (or 330 bits) with 

the price tag of US$ 1,000. The longest modulus contains 617 decimal digits (or 

2048 bits) with the award of US$ 200,000. Soon after the announcement, Manasse 

and Lenstra [1999] factored the first modulus 

RSA-100 = 15226050279225333605356183781326374297180681149613 

  80688657908494580122963258952897654000350692006139 

 = 37975227936943673922808872755445627854565536638199 

 × 40094690950920881030683735292761468389214899724061 

They used the muliple-polynomial quadratic sieve (MPQS) with the workload  

of 7 MIPS years (i.e. it takes 7 years by a CPU that performs 106 instructions per 

second). 

The current world record for the RSA challenge is factorization of RSA-768 (232 

decimal digits) done in 2009 by an international team [Kleinjung et al. 2010]. The 

integer and its factors are: 

 
RSA-768 = 123018668453011775513049495838496272077285356959 

  5334792197322452151726400507263657518745202199 

   78646938995647494277406384592519255732630345373 

   154826850791702612214291346167042921431160222124 

   0479274737794080665351419597459856902143413 

 = 334780716989568987860441698482126908177047949837 

  13768568912431388982883793878002287614711652531743 

   087737814467999489  

 × 367460436667995904282446337996279526322791581 

   643430876426760322838157396665112792333734171433968 

   10270092798736308917 

The factorization was done using the number field sieve (NFS) and required around 

3 × 105 MIPS years. The authors [Kleinjung et al. 2010] argue that RSA with  

1024 bit moduli may be vulnerable to factorization within a decade by an academic 

effort. In 2007, RSA Security withdrew from the challenge. Consequently, the 

authors of factoring RSA-768 could not claim the US$ 50,000 award. 
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7. FACTORING WITH QUANTUM ALGORITHMS 

A breakthrough is due to Shor [1997] who showed that integer factorization can be 

done on quantum computer in polynomial time. The idea is to use a periodic function 

𝑓(𝑥) = 𝑎𝑥 = 𝑎𝑥+𝑟   mod N, 

where N  is our integer that needs to be factored, a is 𝑎 random integer 𝑎 ∈ N  that 

is co-prime to N (or gcd (𝑎, 𝑁) = 1) and 𝑟 is a period. The Shor quantum algorithm 

shows how to determine (with a non-negligible probability) the period r. Once r is 

found and even, then we can determine factors as 

𝑎𝑟 = 1   mod   N      (𝑎
𝑟
2 − 1) (𝑎

𝑟
2 + 1) = 0   mod N 

and gcd (𝑎
𝑟
2 − 1, 𝑁) is likely to produce a nontrivial factor of  N. 

We need to introduce basic notation that is necessary for our discussion. Given 

an orthonormal basis {|𝑥1〉, … , |𝑥𝑛〉} of 𝑛-dimensional Hilbert space, where |𝑥𝑖〉, are 

complex number for i = 1,..., 𝑛. Note that the "ket" notation |𝑥〉,  has been introduced 

by Dirac. Behaviour of any quantum system is described by the following relation 

𝛼1 |𝑥1〉+. . . +𝛼𝑛|𝑥𝑛〉, (2)  

where 𝛼𝑖, 𝑖 = 1, ⋯ 𝑛; are complex numbers such that ∑ 𝛼𝑖
2𝑛

𝑖  = 1.  

The system described by Eq (2) is probabilistic. When observed, however, it 

becomes deterministic and it can be in one of the 𝑛 states 𝑥𝑖 with probability 𝛼𝑖
2.  

The reader who would like to get more detailed exposition of quantum computation 

is referred to any of many textbooks on quantum computing [Hirvensalo 2001].  

Now we are ready to present the Shor quantum algorithm (see Algorithm 4). 
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The following example is taken from [Hirvensalo 2001]. Let 𝑁 = 15 and  

𝑎 = 7. We would like to find the period of 𝑎. Assume that 𝑚 = 16 or we need  

a quantum state with 4 qubits. We follow the steps of the algorithm. 

1. Prepare an initial state  
1

4
∑ |𝑥〉15

𝑥=0 |0〉 

 

2. Apply the function 𝑓(𝑥)7𝑥 mod 15 on the state and get 
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3. After using QFT in 16, we obtain 

 

4. Measurements give one of integers from the set {0, 4, 8, 12} each occurs with 

probability 
1

4
. 

5. Observations 4 and 12 produce the correct period 4, while 0 and 8 fail. 

As the reader may guess, the Shor algorithm can be used for factorization of 

integers. Details and an evaluation of the probability that the Shor factorization 

algorithm succeeds/fails can be found in [Hirvensalo 2001].  

 

 
 

The computational complexity of Algorithm 5 is O((log N)3) and the probability 

of success is at least  ( 1

log log 𝑁
). The overall workload needed to factor N is O((log 

N )3 log log N ). This means that the factorization runs in polynomial time and is 

"easy". As the result, the RSA cryptosystem is easy to break on quantum computer 

(or alternatively on a quantum factoring device). 

Indeed, in 2001 a group from IBM factored 15 (3 × 5) using a quantum 

computer with 7 qubits [Vandersypen et al. 2001]. In 2012, the integer 21 (3 × 7) 

was factored [Martin-López et al. 2012] – this is so far the best result achieved using 

the Shor algorithm. It turns out that adiabatic quantum computation can simulate  
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the Shor algorithm and solves factorization in polynomial time. The best result 

achieved so far using the technique is factorization of 56153 (which is equal to 

(233 × 241) [Dattani and Bryans 2014]. 

8. CONCLUSIONS 

Public-key cryptography is based on the assumption that there are so called  

"one-way functions" or in other way functions that are "easy" to compute but 

difficult to reverse. In this work, we took a look at one of such function. We know 

that having two integers we can easily find their product. The textbook multiplication 

of two integers each n-bit long takes O(n2) steps. However, knowing an integer N,  

it is "hard" to find its factors on classical computers. Security of the RSA encryption 

is directly related to difficulty of factorization. A concerted effort of mathematicians 

and cryptographers led to a significant improvements of conventional factorization 

algorithms. However, none of them could break the sub-exponential complexity 

barrier. Shor demonstrated that factorization is easy on quantum computer. Needless 

to say that this breaks the RSA cryptosystem at least theoretically. Interestingly, the 

attention has been switched from development of new more efficient algorithms to 

implementation of quantum computing. The jury is still out and we do not know  

if a full scale quantum computer can be constructed. Even if this may not be possible, 

it is likely that specialised quantum factoring devices can be implemented.  

The revolution in theory and practice of quantum factorization spells the end of RSA 

cryptosystems (together with other cryptosystems based on Discrete Logarithm).  

It is no surprise that in 2017 NIST announced a competition for quantum-resistant 

public-key cryptographic algorithms [NIST 2018]. 

 
Table 1. The comparison of the factoring algorithms 

Algorithm Complexity Comments 

Sieve of Eratosthenes 𝑂(22
𝑛) exponential 

Quadratic Sieve 𝑂 (𝑒(1+𝑜(1))(log  𝑛 log  log  𝑛)1
2 ) sub-exponential 

Number Field Sieve 𝑂 (𝑒(1.92+𝑜(1))(log 𝑛) 13 (log 𝑛 log  log 𝑛)2
3) sub-exponential 

Shor's Quantum Algorithm 𝑂(𝑛3 log 𝑛) polynomial 

The comparison of the factoring algorithms are given in Table 1 above. Note 

that n = log N is the length of integer N. The reader who would like to explore other 

classical factorization algorithms (not covered in this work) is referred to [Knuth 

1997; Crandall and Pomerance 2001; Wagstaff Jr. 2013]. 
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